
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-10, Oct- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1758

Power Consumption and Energy Estimation in
Smartphones

Ahmed Alsheikhy1, Reda Ammar2, Raafat Elfouly3, Mosleh Alharthi4

1Department of Electrical Engineering, Northern Border University, Arar, Saudi Arabia
2Department of Computer Science and Engineering, University of Connecticut, Storrs, USA

3Department of Computer Engineering, Cairo University, Cairo, Egypt
4Department of Electrical Engineering, Taif University, Taif, Saudi Arabia

Abstract— A developer needs to evaluate software
performance metrics such as power consumption at an
early stage of design phase to make a device or a
software efficient especially in real-time embedded
systems. Constructing performance models and
evaluation techniques of a given system requires a
significant effort. This paper presents a framework to
bridge between a Functional Modeling Approach such as
FSM, UML etc. and an Analytical (Mathematical)
Modeling Approach such as Hierarchical Performance
Modeling (HPM) as a technique to find the expected
average power consumption for different layers of
abstractions. A Hierarchical Generic FSM “HGFSM” is
developed to be used in order to estimate the expected
average power. A case study is presented to illustrate the
concepts of how the framework is used to estimate the
average power and energy produced.
Keywords— Finite State Machine (FSM), Hierarchical
Performance Model (HPM), Power consumption, Real-
time embedded systems, Smartphones.

I. INTRODUCTION

In today’s world, using embedded systems is rising up
extremely rapidly [1]. Many of those systems run on
batteries and power consumption is considered to be an
important criteria throughout the design process of an
implementation [1,2,3,4]. Very often, a designer has to
rely on a simulation tool to take a decision about which
design is the best among others. Sometimes that tool can
be particularly time consuming or insufficient. Due to
heavy demands on embedded systems, it is essential to
estimate performance metrics such as the delay and power
consumption. The focus of performance analysis methods
for real-time embedded systems is more on the analysis of
timing aspects and power consumption [1,2]. In particular,
a designer intends to determine which design produces
less power while a system meets its real-time requirements
[2,3]. A performance modeling scheme is required to
evaluate the power consumption caused by
communication and computation by distributed system
architectures and existing software on different platforms

[1,3,4,5]; and also to identify where bottlenecks occur.
Engineers rely on performance modeling to predict the
expected power before moving to the final stage of
implementation. However, in the absence of a
performance evaluation scheme, they must design and
implement a system to predict the performance defects or
bottleneck. Waiting to spot the performance defects or
bottleneck to occur until the final stage of implementation
and integration between different components results in
increased project costs, reduced productivity and delays in
schedule [1,2,3,6]; applying performance modeling and
evaluation from the first stage of design in any system
exhibits better results than those using a “fix-it-later”
approach [1,6]. Currently, three approaches exist that
evaluate system performance and analysis which are: 1-
Simulation Based Method, 2- Analytical Based Method
and 3- Direct Measurement [1]. The Hierarchical
Performance Model (HPM) combines and collaborates
direct measurements with the analytical approach with the
help of software performance engineering [2,3,4,5],
queueing networks [6], hardware and software co-design
to predict the average power consumption.
Our contribution in this paper is done by developing the
hierarchical generic FSM, converting it to a Markovian
model and also integrating it with its affiliated hierarchical
performance model (HPM) in order to estimate system
performance metrics such as power consumption and time
delay. Only power consumption is considered in this
paper. The developed framework was applied only on one
device due to the availability and presented within this
paper.
In the reminder of this paper, we present related work on
power consumption estimation schemes in Section 2,
followed by a detailed discussion of the hierarchical
generic finite state machine (HGFSM) and its affiliated
hierarchical performance model (HPM) to estimate the
power consumption. Section 4 includes a case study that
applies the mapping scheme inside the framework and
evaluate its power and energy and also to determine
locations of bottlenecks. Section 5 concludes the paper.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-10, Oct- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1759

II. RELATED WORK
Functional Modeling techniques and Analytical Modeling
ones are used to estimate the system performance metrics
such as power estimation at an early stage if possible.
Queueing schemes have been used since the 1970s to
model performance metrics of any software systems [6].
An FSM is used to evaluate system level performance
[9,10,11]; however, that FSM was not applicable to any
system since it was designed for a specific system. So
designing a hierarchical generic FSM to be used in
evaluating performance for any embedded system is
developed in section 3. Many techniques were developed
to estimate the power consumption at gate-level, circuit-
level and register-transistor-level. However, those
approaches are impractical to evaluate power consumption
due to the lack of availability of circuit and gate levels
information of a system under investigation. In [4], power
analysis was done based on Y-chart scheme by Amit
Nandi. He integrated power and performance analysis into
the system level and claimed that the analysis became an
integral part of the design process as it helped to find a
proper architecture for a target application. Arafat, Ammar
and Fergany in [8] applied the HPM method to evaluate
the software power consumption based on measurements
of the consumed power by each instruction. They claimed
that their approach can be used to estimate power
consumption of a software application based on physical
measurements and computation modeling. In [13], rapid
performance and power consumption evaluations were
done at the system level only and that did not include the
task level, module level and operations level. Kumar, Ben
Attallah, Niar, Senn and Dekeyser in [14] presented a fast
and accurate hybrid power estimation methodology for
embedded systems at the system level only and did not
provide any information about more levels. Many methods
were developed to estimate the power consumption at the
system level only as in [15].
Numerous parameters are required for each layer when
using HPM to estimate the average power consumption in
different levels; those parameters propagate from a bottom
level to a higher one [1,2,3]. Nevertheless, accessing this
information within a level or communication of
information between these layers result in a complex
manner [3]. The HPM is used to manage and distribute
performance information between different layers of the
framework. This paper considers the problem of mapping
a functional modeling approach such as FSM to the
analytical (mathematical) modeling approach such as
(HPM) for performance analysis. A general overview of
the developed framework using the functional modeling
approach “HGFSM” which refers to Hierarchical Generic
Finite State Machine and the analytical modeling

approach (HPM) to estimate the power consumption is
depicted in figure 1.

Fig.1: developed framework

Hierarchical Generic FSM is designed and then converted
into the Markovian Model “MM”. Each state in the
Markovian model is decomposed into another sub-
markovian states if possible. Furthermore, Hierarchical
Performance Model “HPM” is applied to each state to
derive the expected average power consumption
equation(s) using bottom-up methodology which
represent(s) the objective function(s).

III. HIERARCHICAL GENERIC FINITE STATE

MACHINE AND HIERARCHICAL

PERFORMANCE MODEL
A typical FSM model is composed of 5-tuples {∑ S, S0, δ,
F}; where: ∑ represents a set of input alphabets. S
represents a set of states in the model. S0 represents an
initial state or a set of states which are sub-elements of S. δ
represents a state-transition function which maps between
a current state to a next state and F contains a final state or
a set of states which belongs to S [9,10]. A task in any
embedded system can be classified as either completed or
failed. A set of states exists among those two states to
form the hierarchical generic FSM “HGFSM” model as
shown in fig. 2 [1,2].

Fig. 2: Hierarchical generic FSM

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-10, Oct- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1760

Each input alphabet is represented by a task or a set of
tasks which are integrated to form a desired job.
Movement from a current state Si to a next state Sj is
represented by a transition arrow and is done according to
some existing circumstances or activities inside the system
under investigation. For the hierarchical generic FSM, S
contains all 7 states whereas S0 contains only one state
which is the Initial state. F contains one state which is
named as completed state, referring to a successful
completion, and is denoted by two circles in fig. 2.
The states are: Initial state: each task is provided with an
arrival time (ta) and a deadline time (td) which refer to one
of the constraints in the system. There is no transition
when the system is idle which means there is no
incoming task. Checking state: it performs several tasks:

• Checks if the task deadline can be met or not; if
not, it forwards the task into the Failed state to
restart its cycle. Otherwise, it moves to a next
condition.

• Checks available resources for execution; if not,
sends tasks to the Suspend state. Otherwise,
performs the next operation.

• Checks if the queue in the Execution state, which
is also called the Processing state as shown in fig
.2, is full or not; if not, then it forwards the task
into the Execution “Processing” state. Otherwise,
it forwards it into the waiting state.

The state itself is decomposed into another sub-FSM
which contains 3 states: Receiving and checking state,
Decision State and Recording state. More information
can be found in [1]. The Execution “Processing as in fig.
2” state: represents the place where the task is executed. If
the execution is done successfully, it sends the task to the
Completed state. Otherwise, it sends it to the Failed state.
The execution is completed successfully if the execution
time (te) <= deadline time (td). The state is decomposed
into another two sub-FSMs to form hierarchical model as
shown in fig. 2. In the Waiting state, the task waits its turn
to be executed once the queue of the Execution
“Processing” state is not full or the Processing Unit “P.U.”
becomes available when the deadline time can be met;
otherwise, the task is sent to the Failed state to restart its
cycle. The Suspend state, contains tasks for which their
computing resources are not yet available and there is a
high chance to be executed once their resources become
available while the deadline time can be met. There are 16
states in the developed HGFSM which form the complete
model. The HGFSM in fig. 2 can be remodeled by
including the Suspend state inside the Checking state,
more information about it can be found in [1].
The hierarchical generic FSM is mapped to a Markov
model “MM” which represents a state diagram (a
component of HPM) [1,2]. The Markovian model has 3-

tuples {S, A, P}, where S represents a set of states existed
in the HGFSM model. A denotes a vector of initial
probabilities values for all states in the model while P
contains a matrix that represents transition probabilities
among states according to some circumstances existed in
the developed model. The mapping is done as follows: 1.
Every state in the HGFSM is mapped to a state in the MM.
2. Each edge in the HGFSM is converted to a transition
arrow qij which represents the flow direction from the
current state (Si) to the next state (Sj). 3. Each transition
arrow is associated with a parameter kij which represents a
number of tasks that go from state Si to state Sj. That
parameter is used to calculate the probability value Pij
which denotes the possibility of moving from the current
state (Si) to the next state (Sj) and it is calculated using the
following equation, where Ni represents a number of total
tasks in state Si
Pij = Kij / Ni (1)
4. Each FSM graph and state is associated with its
Computation Structure Model “CSM” to show data flow
in the system under consideration. CSM helps in
constructing performance metrics equations. 5. If
applicable, a state is decomposed into another sub-FSM
and additional Markovian model is constructed to create
another level in the hierarchy. A figure for the Markovian
model is not shown in this paper due to the space
limitation. However, the interested readers can found more
information about it in [1].
Performance modeling evaluation is considered to be the
abstraction of the functional and performance
characteristics of the system under consideration which are
combined to determine if it meets the performance
requirements based on a user demands and system
architectures [6,16]. The Hierarchical Performance Model
(HPM) layers are illustrated in figure 3. There are 4 layers
in fig. 3 which are used to derive the average power
consumption and the average energy produced in the
system(s) under investigation.

Fig. 3: Hierarchical Performance Model stack layers

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com

www.ijaems.com

IV. CASE STUDY: ANDROID
Android software architecture is designed and built as a
stack structure as depicted in fig. 4(a) [18].

Fig. 4(a): Android software architecture

All components of the 4 layers integrate with each other to
form what is known today as ANDROID
contains some blocks that integrate together to do a set of
specific jobs. The 4 major layers “levels” in Android from
bottom to up are: A. LINUX KERNEL, B. LIBRARIES
AND ANDROID RUNTIME, C. APPLICATION
FRAMEWORK and D. APPLICATIONS. More
information can be found in [18,19,20,21].
Any application in Android is built based on 4 different
components which are: 1- Activity, 2- Content provider, 3
Service and 4- Broadcast receiver [19,20,21]. In Android,
a task can be defined as an activity or a set of activities. A
typical lifecycle for any activity in Android has 7 states
which are: OnCreate, OnStart, OnResume, OnPause,
OnRestart, OnStop and OnDestroy. Interested readers are
referred to [18,19] for more details about Android. Table 1
illustrates the mapping between the HGFSM and the
Android activity lifecycle.

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogainpublication.com)

ANDROID
Android software architecture is designed and built as a

4(a) [18].

4(a): Android software architecture

All components of the 4 layers integrate with each other to
ANDROID. Each layer

contains some blocks that integrate together to do a set of
specific jobs. The 4 major layers “levels” in Android from

RNEL, B. LIBRARIES
AND ANDROID RUNTIME, C. APPLICATION
FRAMEWORK and D. APPLICATIONS. More
information can be found in [18,19,20,21].
Any application in Android is built based on 4 different

Content provider, 3-
Broadcast receiver [19,20,21]. In Android,

a task can be defined as an activity or a set of activities. A
typical lifecycle for any activity in Android has 7 states
which are: OnCreate, OnStart, OnResume, OnPause,

Interested readers are
referred to [18,19] for more details about Android. Table 1
illustrates the mapping between the HGFSM and the

Table.1: Mapping HGFSM with the Android activity
lifecycle

Fig. 4(b) shows a typical overview of how a task starts and
runs on an Android device.

Fig. 4(b): Task execution in Android
In fig. 4(b), solid lines indicate the control flow between
the states whereas the dashed lines indicate a message that
is sent among states. Once the software processes, which
are displayed as the states, and the interface messages
between all states are known, our next step is to determine
the performance parameters associated with the graph.
These parameters are: Tasks arrival rates
tasks exist in each state before processing them N
number of tasks move from the current state (S
new state (Sj) K ij , flow probabilities P
multipliers βij , which are assumed to be unity, and
lastly the computation and
(service) times E(s). To utilize the performance
parameters, at the early stage, we identify the input(s),
output(s) and divide any Android system into different
components if possible as shown in figure 4(c). There are

 [Vol-2, Issue-10, Oct- 2016]

 ISSN : 2454-1311

 Page | 1761

Table.1: Mapping HGFSM with the Android activity
lifecycle

4(b) shows a typical overview of how a task starts and

4(b): Task execution in Android

In fig. 4(b), solid lines indicate the control flow between
the states whereas the dashed lines indicate a message that

states. Once the software processes, which
are displayed as the states, and the interface messages
between all states are known, our next step is to determine
the performance parameters associated with the graph.

Tasks arrival rates λ, number of
tasks exist in each state before processing them Ni,
number of tasks move from the current state (Si) to the

, flow probabilities Pij , message
, which are assumed to be unity, and

lastly the computation and communication cost
. To utilize the performance

parameters, at the early stage, we identify the input(s),
output(s) and divide any Android system into different
components if possible as shown in figure 4(c). There are

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-10, Oct- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1762

one input, one output, six components (one action, one
sequence and four branches).

Fig.4(c): System Components

To determine the probabilities values, we need to know
how many tasks (Ni) exist first in each state and then how
many tasks (kij) out of Ni are sent from state Si to state Sj;
all these numbers should be known in advance either by
obtaining them from actual tests (experiments/simulation)
or given by the designers. Several experiments were
performed in order to obtain the values for different
performance parameters to estimate the expected average
power consumption and/or energy produced. Table 2
shows the number of tasks exist in each state while the
system under investigation is running. Note that the
subscript indicates the state (ID). The system within this
paper will be represented by a smartphone, more specific,
Galaxy Note 3 is the system to be used and tested.

Table.2: Number of tasks in each state

The probability value Pij is computed using equation (1);
the next step is to specify the details of the methods used
to derive the power consumption equation(s). The
software structure indicates the order in which the
operations are executed in order to complete a desired task
or computation. The software structure can be seen as the
Computation Structure Method (CSM) which consists
of Data Flow Graph DFG and Control Flow Graph CFG.
The DFG and CFG for the Android application are not
shown due to the space limitation. The interested readers
are referred to [1] for more information and DFG and
CFG. To derive a cost equation, we multiply each state
cost with its associated flow parameter; then sum all
results. After substituting all dependent flows with
independent ones, the independent flows are that which
complete loop whereas the dependent flows are the

remaining ones. The expected average power consumption
is computed as follows:
PCaverage=(1*C initial)+((1+e4)*(Ccheck+Ctest))+((e11+1)*Cdeci

sion)+((e9+e8)*(Cwait+Ctest))+((e11+1)*(Cexe+Ctest) (2)
PC stands for Power Consumption. To compute the energy
produced from the system, just multiply the result from eq.
(2) with a time (t) spent to perform the desired jobs. In
equation (2), each parameter is associated with its flow
variable(s) which is/are denoted by e. Each flow variable
represents a value of moving through a path from a start
node to an end node in the CFG. Each flow takes a value
between {0,1,….,∞} and mainly depends on a type of
distribution [1,2]. The flows also represent the data
dependent aspects of the computation time [1]. They are
discrete random variables and are modeled using
probability distribution and statistics methods. Several
probability distributions exist which are summarized as
follows: Bernoulli, Binomial, Geometric, Modified
Geometric and Poisson [1,2]. Given the probability
distribution type of e, several characteristics such as
Expected value E(e), second moment E(e2), Variance
Var(e) and the coefficient of variation C2 are easily
obtained. More information about estimating the values of
computations and communication aspects can be found in
[1,3]. The value of Cinitial is determined from its CFG as
shown in fig. 5(a). From fig. 5(a), three operations take
place in every Android device which are: Assigning thread
to perform a desired action, Variables initialization and
finally creating the Graphical User Interface to interact
with a user.

Fig. 5(a): CFG for the Initial state

From fig. 5(a), the equation for estimating the average
power consumption is computed as follows:
Cinitial = Ccreate UI + CInitializations + Cassigning thread (3)
For the Executing “Processing” state, its cost is obtained
from its CFG which is now shown due to the space
limitation; so
Cexecution = [(e1+e4)*(Chandling state+Ctest)]+[e 4*Caborted]
+[(1+e 4)*Ctest] (4)

Initial Check Wait Execution Failed
Compl

ete

N1 N2 N3 N4 N5 N6

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-10, Oct- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1763

Substitute the value of Chandling state which is obtained from
its CFG as depicted in fig. 5(b).
Chandling = [(1 + e3 + e6) * (Cready + Ctest)] + (e3 * Cidle) +
[(e6+1)*C test]+(1*(C run)) (5)
Note that the cost value obtained for each state represents
the expected power consumption which is used for the
computation in a Node View in the system level [1].

Fig. 5(b): CFG of the Handling state

Next step is to find a number of visits V to each state
which is computed using the following equation
[V] = (I – P) -1 (6)
Where [V] is a matrix whose elements indicate number of
visits to each state; the number of its entries is equal to the
number of states exist in the system. I is the identity
matrix and P is the matrix of transition probabilities
between all states. So the average cost becomes as
follows:
PCaverage = ∑(Vi*C i) (7)
Where i = 1,……..,6 which is the number of states in the
framework; Ci indicates the value of cost associated with
each state.
Only one hardware architecture was used, due to the
availability reason, to profile different applications. A
profiler tool used to find the actual power consumption in
the smartphones is available only on limited devices.
JAVA Eclipse is also used to estimate the values of
several performance parameters by performing multiple
experiments. The architecture refer to a Smartphone, run
with Android as O.S., which is: Galaxy Note 3 as
mentioned earlier. The applications used within this
profiling part range from a simple one like a Basic
Calculator to more complex one, which consumes more

power from the P.U. such as Video Recording. Four
different applications were used including: 1. Video
Recording with Preview, 2. Calculator, 3. Audio
Recording, and 4. Picture Taking. The profiling was done
in three parts according to the developed HGFSM which
are:

� Initial part (part one in the developed HGFSM):
represents the first stage toward finding the
average power consumption for a task. This stage
contains “Initial state” in the HGFSM and
“OnCreate” in the Android activity lifecycle.

� Check part (part one in the developed HGFSM):
represents the second stage and contains two
states which are (the Checking State and the
Waiting state in the HGFSM) and (OnStart) in
the Android activity lifecycle as shown in table 1.

� Run part (part two and three in the HGFSM):
represents the last stage and contains the
following states: Execution, Completed and
Failed as shown in table 1.

The aim of this profiling is to determine the expected
average power consumption and to identify which part in
the smartphone produces more energy. All applications
were tested several times (about 50 times) and then the
average power is determined. In the architecture, all four
applications were installed and then the profiling started
by launching them one by one. For flows in equations (2)
to (5), they occur in a single run of “if statement” and we
assume equally likely for a branch to be taken so p = q =
0.5 since p + q = 1 as stated earlier.
Finding the number of visits in each state is determined
using Matlab and then substituting in equation (2) will
give the expected average power cost as follows;
E(PC)=(1*Cinitial)+(E(1+e4)*(Ccheck+Ctest))+(E(e11+1)*Cde

cision)+(E(e9+e8)*(Cwait+Ctest))+(E(e11+1)*(Cexe+Ctest) (8)
 E refers to Expected average value, so the average energy
produced is calculated using the following equation:
E(energy) = E(Power) * t (9)
Where t represents the period of time taken to run the
applications and it is fixed to be 45s = 45000ms. Tables 3
shows the actual values and expected ones for power
consumption for all 4 applications in Note 3.
Table.3: actual and expected power consumption in Note

3

Application
Name

Expected
power (mw)

Actual
Power
(mw)

Error

Video 2.215 1.997 10.92%
Calculator 1.743 1.856 6.09%

Audio 2.189 1.972 11%
Taking
Picture

2.206 2.033 8.51%

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-10, Oct- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1764

The difference between the expected and actual average
power consumption lays within a small error “±11” as
shown in table 3. Table 4 illustrates the actual and the
expected average energy produced in Note 3 in milli joule
“mj”; all values are scaled by 103.
Table.4: expected and actual energy produced in Note 3
Application

Name
Expected

Energy (mj)
Actual

Energy(mj)
Error

Video 99.675 89.865 10.92%
Calculator 78.435 83.52 6.09%

Audio 98.505 88.74 11%
Taking
Picture

99.27 91.485 8.51%

Fig. 6 shows the actual and expected energy produced in
Note 3 by all four applications with scale by 103.

Fig. 6: expected and actual energy in Note 3

Samsung tried to minimize the energy produced in its
devices and Note 3 yields less than expected even though
that several applications were already installed and run on
it. During the experiments, several applications ran on
Note 3 and caused he energy to be higher than the
expected. Also the initial state, which includes several
activities (assigning thread, variables initializations and
creating the GUI), consumes more power than the
remaining states. In general, the Note 3 device is
optimized in terms of the power consumption and the
execution time as proofed by the experiments. Table 5
illustrates the average values for several primitives
operations in Samsung Galaxy Note 3 after performing
different experiments. All values are in milli watt “mw”
and were obtained after repeating the experiments more
than 45 times.

Table.5: List of primitive operations and their average
power consumption values

List of primitive
operations

Average value

Function call 0.0437
Addition 0.119

Subtraction 0.147
Multiplication 0.492

Division 0.687
Fig. 7 illustrates the average power consumption (actual
and expected) in Galaxy Note 3 using two benchmark
applications. The two benchmark applications are
Mobibench and Norvigtorious, both of them can be found
and downloaded from Play Store or from Github. They
were tested and ran several times to estimate the average
values.

Fig.7: Average power consumption in two benchmarks

In each benchmark application, the first bar refers to the
actual average power consumption while the second bar
represents the estimated average values.

V. CONCLUSION
This paper presented the developed framework to
estimate the expected average power consumption and
energy in smartphones which incorporated different levels
of abstraction. Two examples were given to demonstrate
how the power and energy are estimated using the
software structure and the architecture to represent the
corresponding levels of the model. The framework can be
applied on any smartphone to estimate the expected
average values for the power consumption and the energy
produced. The future work is to determine the average
power dissipation and energy consumed with a device
runs on multiple threads “up to three threads” and find the
effect of rendering GPU(s) to take control on creating
graphical task(s) such as drawing the UI window which is
found to be the dominant factor. It takes about 75% of the
average power cost in the Initial state.

0

10

20

30

40

50

60

70

80

90

100

Video Calculator Audio Taking

Picture

Energy produced in Note 3 in mj

Expected Energy Actual Energy

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-10, Oct- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1765

REFERENCES
[1] A. Alsheikhy, “High Performance Embedded

System”, Doctoral Dissertation, University of
Connecticut, 2016.

[2] A. Alsheikhy, S. Han and R. Ammar, "Hierarchical
Performance Modeling of Embedded Systems“,
Computers and Communication (ISCC), 2015 20th
IEEE Symposium on Computers and
Communications, pp. 936-942, July 2015.

[3] A. Alsheikhy, S. Han and R. Ammar, "Delay and
Power Consumption Estimation in Embedded
Systems Using Hierarchical Performance Modeling”,
15th IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT),
pp. 34-39, December 2015, Abu Dhabi, UAE.

[4] A. Nandi, “System-Level Power/Performance
Analysis for Embedded Systems Design”, Master
Thesis, Carnegie Mellon, 2002.

[5] L. Chin, .S. Wei and G. Yu, ”Performance
Evaluation of Embedded System Based on Behavior
Expressions”, 2nd International Conference on
Mechanical and Electronics Engineering (ICMEE),
Vol. 1, pp. 253-256, 2010.

[6] D. Smarkusky, R. Ammar, I. Antonios and H. Sholl,
“Hierarchical Performance Modeling for Distributed
System Architectures,” Computer and
Communications, 2000. Proceedings. ISCC 2000.
Fifth IEEE Symposium, pp. 659–664, July 2000.

[7] R. Ammar, “Software Performance Analysis,”
lecture notes, University of Connecticut, 1991.

[8] H. Arafat, R. Ammar and T. Fergany, “Evaluating
Software’s Power Consumption”, Paper Version,
University of Connecticut.

[9] B. Lee and E. A. Lee, “Interaction of Finite State
Machines and Concurrency Models”, Proceeding of
Thirty Second Annual Asilomar Conference on
Signals, Systems and Computers, Pacific Grove,
California, November 1998.

[10] A. Stan, N. Botezatu, L. Panduru and R. G. Lupu, “A
Finite State Machine Model Used in Embedded
Systems Software Development,”, pp. 51-63, 2009.

[11] B. Lee and E. A. Lee, “Hierarchical Concurrent
Finite State Machines in Ptolemy,”, Proceeding of
International Conference on Application of
Concurrency to System Design, pp. 30-40,
Fukushima, Japan, March, 1998.

[12] M. Sarrafzadeh, F. Dabiri, R. Jafari, T. Massey and
A. Nahapetian, “Low Power Light-Weight
Embedded Systems”, Proceedings of the
International Symposium on Low Power Electronics
and Design (ISLPED), pp. 207-212, Oct. 2006.

[13] S. Niar and N. Inglart, “Rapid Performance and
Power Consumption Estimation Methods for

Embedded System Design”, Proceedings of the 7th
IEEE International Workshop on Rapid System
Prototyping (RSP), 2006.

[14] S. Kumar, R. B. Attallah, S. Niar, E. Senn and J. L.
Dekeyser, “Fast and Accurate Hybrid Power
Estimation Methodology for Embedded Systems”,
Conference on Design and Architectures for Signal
and Image Processing (DASIP), IEEE, pp. 1-7, 2011.

[15] S. Kumar, O. Palomar, O. Unsal, A. Cristal, R. B.
Attallah and S. Niar, “PETS: Power and Energy
Estimation Tool at System-Level”, 15th International
Symposium on Quality Electronic Design (ISQED),
pp. 535-542, 2014.

[16] J. Viskari, R. Jokinen and K. Hakkarainen, “A
Generic FSM Interpreter for Embedded Systems,”,
proceedings of IEEE EURWRTS, pp. 284-289, 96.

[17] L. Carmichael, A. Warner, FNAL and Batavia, “A
Generic Finite State Machine Framework for the
ACNET Control System,”, proceedings of
ICALEPCS, pp. 28-30, Kobe, Japan, 2009.

[18] Z. Wang and A. Stavrou, “Google Android Platform:
Introduction to The Android API, HAL and SDK,”,
lecture notes, George Mason University.

[19] V. Matos, “Android Multi-Threading,” Notes on
Android, Chapter 13, Cleveland State University.

[20] X. Ma, “Android OS,”, lecture notes, CSE 120, Fall
2010.

[21] S. Brahler, “Analysis of The Android Architecture,”,
master thesis, Karlsruher Institute for Technology,
October 2010.

[22] K. Reddy, S. Baragada, D. S. Kumar and B. P. Rani,
“Software Performance Evaluation of a Polar
Satellite Antenna Control Embedded System,”,
International Journal of Application or Innovation in
Engineering and Management (IJAIEM), Vol. 2. NO.
1, pp. 166-173, January, 2013.

